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Background

Background

Fractional Ginzburg-Landau equations (FGLEs) have been used to
describe various physical phenomena such as neural networks mod-
eling and fractal mediaa.

Dynamical low-rank approximations of matrices are widely used for
reducing models of large size. Such an approach has a broad va-
riety of application areas, such as image compression, information
retrieval and a blow-up problem of a reaction-diffusion equationb.

aV.E. Tarasov and G.M. Zaslavsky. “Fractional Ginzburg-Landau equation for fractal
media”. In: Physica A 354 (2005), pp. 249–261.

bO. Koch and C. Lubich. “Dynamical low-rank approximation”. In:
SIAM J. Matrix Anal. Appl. 29 (2007), pp. 434–454.
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Motivation

Motivation

In this work, we mainly study a dynamical low-rank approximation
for solving the following 2D complex FGLE:

∂tu − (ν + iη)(∂αx + ∂βy )u + (κ+ iξ)|u|2u − γu = 0,

(x , y , t) ∈ Ω× (0,T ],

u(x , y , 0) = u0(x , y), (x , y) ∈ Ω̄ = Ω ∪ ∂Ω,

u(x , y , t) = 0, (x , y) ∈ ∂Ω,

(1)

i =
√
−1, ν > 0, κ > 0, η, ξ, γ are real numbers;

Ω = (xL, xR) × (yL, yR) ⊂ R2, u0(x , y) is a given complex
function.
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Motivation

where both ∂αx (1 < α < 2) and ∂βy (1 < β < 2) are the Riesz
fractional derivativesc:

∂αx u(x , y , t) = − 1

2 cos(απ/2)Γ(2− α)

∂2

∂x2

∫ ∞
−∞
|x − ζ|1−α u(ζ, y , t)dζ,

∂βy u(x , y , t) = − 1

2 cos(βπ/2)Γ(2− β)

∂2

∂y2

∫ ∞
−∞
|y − ζ|1−β u(x , ζ, t)dζ.

cR. Gorenflo and F. Mainardi. “Random walk models for space-fractional diffusion
processes”. In: Fract. Calc. Appl. Anal. 1 (1998), pp. 167–191.
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The matrix differential equation

The semi-discrete scheme

The second-order fractional centered difference methodd is used for
space discretization, i.e,

∂αx u(xi , yj , t) = −h−αx

i∑
k=−Nx +i

gαk ui−k,j (t) +O(h2
x )

= δαx uij (t) +O(h2
x )

∂βy u(xi , yj , t) = −h−βy

j∑
k=−Ny +j

gβk ui ,j−k (t) +O(h2
y )

= δβy uij (t) +O(h2
y )

dC. Çelik and M. Duman. “Crank–Nicolson method for the fractional diffusion
equation with the Riesz fractional derivative”. In: J. Comput. Phys. 231 (2012),
pp. 1743–1750.
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The matrix differential equation

The semi-discrete scheme

gµk =
(−1)k Γ(1 + µ)

Γ(µ/2− k + 1)Γ(µ/2 + k + 1)
(µ = α, β, k ∈ Z)

hx =
xR − xL

Nx
, hy =

yR − yL

Ny

The semi-discrete scheme is given as

duij (t)

dt
= (ν+iη)

(
δαx + δβy

)
uij (t)−(κ+iξ) |uij (t)|2 uij (t)+γuij (t),

where uij (t) ≈ u(xi , yj , t).
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The matrix differential equation

The matrix differential equation

The matrix differential equation corresponding to the above spatial
semi-discretized form is give by

U̇(t) = AxU(t) + U(t)Ay−(κ+ iξ) |U(t)|2 U(t)+

γU(t),

U(0) = U0,

(2)

where

U(t) = [uij (t)]1≤i≤Nx−1
1≤j≤Ny−1

, U0 = [u0(xi , yj )]1≤i≤Nx−1
1≤j≤Ny−1

,

U̇(t) =

[
duij (t)

dt

]
1≤i≤Nx−1
1≤j≤Ny−1

,

Ax and Ay are two symmetric Toeplitz matrices with first columns:

−ν + iη

hαx

[
gα0 , g

α
1 , · · · , gαNx−2

]T
and −ν + iη

hβy

[
gβ0 , g

β
1 , · · · , g

β
Ny−2

]T
.
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The full-rank Lie-Trotter splitting method

The full-rank Lie-Trotter splitting method

Eq. (2) is split into the following two subproblems:

U̇1(t) =

Stiff linear part︷ ︸︸ ︷
AxU1(t) + U1(t)Ay , U1(t0) = U0

1 , (3)

and
U̇2(t) = G (U2(t)) , −(κ+ iξ) |U2(t)|2 U2(t) + γU2(t)︸ ︷︷ ︸

Nonstiff (nonlinear) part

,

U2(t0) = U0
2 .

(4)
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The full-rank Lie-Trotter splitting method

The full-rank Lie-Trotter splitting method

The full-rank Lie-Trotter splitting scheme with time step size τ = T
M

is given by
Lτ = ΦL

τ ◦ ΦG
τ .

Here, ΦL
τ and ΦG

τ denote the solutions of Eqs. (3) and (4), respec-
tively.

Starting with U0
2 = U0, the numerical solution U1 of Eq. (1) at

t = t1 is thus given by

U1 = Lτ (U0) = ΦL
τ ◦ ΦG

τ (U0).

Subsequently, the numerical solution of Eq. (1) at tk is

Uk = Lk
τ (U0).
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The low-rank approximation

The low-rank approximation

We seek after low-rank approximations

X1(t),X2(t) ∈Mr =
{
X (t) ∈ C(Nx−1)×(Ny−1) | rank (X (t)) = r

}
to U1(t) and U2(t), respectively.
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The low-rank approximation

The low-rank solution of Eq. (3)

It can be observed that (3) is rank preservinge. That is, for any
X ∈Mr , AxX + XAy ∈ TXMr , where TXMr is the tangent space
of Mr at a rank-r matrix X .

Thus, for a given rank-r initial value
X 0

1 , the solution of

Ẋ1(t) = AxX1(t) + X1(t)Ay , X1(t0) = X 0
1

remains rank-r for all t.

How to solve this at t = t1?

X1(t1) = eτAxX 0
1 e

τAy .

eU. Helmke and J. B. Moore. Optimization and Dynamical Systems. London:
Springer-Verlag, 1994, Lemma 1.22.
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The low-rank approximation

H. M. Walach,Time integration for the dynamical low-rank approximation of matrices

and tensors (Doctoral dissertation), Eberhard Karls Universität Tübingen (2019), Page

17.
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The low-rank approximation

The low-rank solution of Eq. (4)

The low-rank solution of subproblem (4) is obtained by solving the
following optimization problemf

min
X2(t)∈Mr

∥∥∥Ẋ2(t)− U̇2(t)
∥∥∥ , s.t. Ẋ2(t) ∈ TX2(t)Mr ,

where TX2(t)Mr is the tangent space of Mr at the current approx-
imation X2(t).

How to solve this optimization problem?

C. Lubich, I. V. Oseledets, A projector-splitting integrator for dynamical low-rank

approximation, BIT 54 (2014) 171-188.

fO. Koch and C. Lubich. “Dynamical low-rank approximation”. In:
SIAM J. Matrix Anal. Appl. 29 (2007), pp. 434–454.
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The low-rank approximation

Solve the optimization problem

min
X2(t)∈Mr

∥∥∥Ẋ2(t)− U̇2(t)
∥∥∥ , s.t. Ẋ2(t) ∈ TX2(t)Mr

equivalent to

Ẋ2(t) = P(X2(t))G (X2(t)), X2(t0) = X 0
2 ∈Mr ,

where P(X2(t)) is the orthogonal projection onto TX2(t)Mr .
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The low-rank approximation

Solve the optimization problem

A rank-r matrix X2(t) ∈ C(Nx−1)×(Ny−1) can be expressed as X2(t) =
S(t)Σ(t)V (t)∗, where S(t) ∈ C(Nx−1)×r and V (t) ∈ C(Ny−1)×r

have orthonormal columns, Σ(t) ∈ Cr×r is nonsingular and has the
same singular values as X2(t), and ∗ means conjugate transposeg.

This expression is similar to SVD, but Σ(t) is not necessarily a
diagonal matrix.

gC. Lubich and I. V. Oseledets. “A projector-splitting integrator for dynamical
low-rank approximation”. In: BIT 54 (2014), pp. 171–188.
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The low-rank approximation

The projector-splitting integrator

P(X2(t))G (X2(t)) = S(t)S(t)∗G (X2(t))−
S(t)S(t)∗G (X2(t))V (t)V (t)∗+

G (X2(t))V (t)V (t)∗

, P1(X2(t))G (X2(t))−
P1(X2(t))G (X2(t))P2(X2(t))+

G (X2(t))P2(X2(t))

P1(X2(t)) and P2(X2(t)) are the orthogonal projections onto the
spaces spanned by the range and the corange of X2(t), respectively.
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The low-rank approximation

The projector-splitting integrator

The low-rank solution of Eq. (4) at t1 can be obtained by solving
the evolution equations:

Ẋ I
2(t) = P1(X2(t))G (X2(t)), X I

2(t0) = X 0
2 ,

Ẋ II
2 (t) = −P1(X2(t))G (X2(t))P2(X2(t)), X II

2 (t0) = X I
2(t1),

Ẋ III
2 (t) = G (X2(t))P2(X2(t)), X III

2 (t0) = X II
2 (t1).

Then, X III
2 (t1) is the approximate solution of X2(t1).
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The low-rank approximation

The low-rank approximation of Eq. (1)

Let X 0 be a rank-r approximation of the initial value U0. We start
with X 0

2 = X 0 and obtain the rank-r approximation X 1 of the solu-
tion of (1) at t1 as

X 1 = Lτ,r (X 0) = ΦL
τ ◦ Φ̃G

τ (X 0). (5)

Here, Φ̃G
τ denotes the low-rank solution of (4). Consequently, the

low-rank solution of (1) at tk is X k = Lk
τ,r (X 0).
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Preliminaries

Preliminaries

Assumption 1

We assume that

(a) G is continuously differentiable in a neighborhood of the ex-
act solution, and the solution of Eq. (1) is bounded, i.e.
|u(x , y , t)| ≤ δ, (x , y , t) ∈ Ω× (0,T ], for some δ > 0;

(b) there exists ε > 0 such that

G (X (t)) = B̃(X (t)) + R(X (t)) for t0 ≤ t ≤ T ,

where B̃(X (t)) ∈ TX (t)Mr and ‖R(X (t))‖F ≤ ε.

(c) The exact solution of (1) is sufficiently smooth such that the
fractional central difference method is second-order accurate.
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Preliminaries

Preliminaries

Property 1

(a) There exists C1 > 0 such that Ax and Ay satisfy∥∥∥etAxZetAy

∥∥∥
F
≤ ‖Z‖F ,

∥∥∥etAx (AxZ + ZAy )etAy

∥∥∥
F
≤ C1

t
‖Z‖F

for all t > 0 and Z ∈ C(Nx−1)×(Ny−1).

(b) Under Assumption 1(a), the function G is locally Lipschitz con-
tinuous and bounded in a neighborhood of the solution U(t).

That is to say, for
∥∥∥Û − U(t)

∥∥∥
F
≤ ξ̃,

∥∥∥Ũ − U(t)
∥∥∥

F
≤ ξ̃ and∥∥Ū − U(t)

∥∥
F
≤ ξ̃ (ξ̃ > 0, t0 ≤ t ≤ T), one obtains∥∥∥G (Û)− G (Ũ)

∥∥∥
F
≤ L

∥∥∥Û − Ũ
∥∥∥

F
,
∥∥G (Ū)

∥∥
F
≤ H,

where the constants L and H depend on δ and ξ̃.



Introduction A low-rank approximation of the FGLE Convergence analysis Numerical results Summary

Error estimate

Outline

1 Introduction
Background
Motivation

2 A low-rank approximation of the FGLE
The matrix differential equation
The full-rank Lie-Trotter splitting method
The low-rank approximation

3 Convergence analysis
Preliminaries
Error estimate

4 Numerical results

5 Summary



Introduction A low-rank approximation of the FGLE Convergence analysis Numerical results Summary

Error estimate

Convergence analysis

Let X 0 be a given rank-r approximation of the initial value U0 sat-
isfying

∥∥X 0 − U0
∥∥

F
≤ σ, for some σ ≥ 0.
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Error estimate

Convergence analysis

The global error can be split in three terms:

1) The global error of the full-rank Lie-Trotter splitting, i.e.

E k
fs = U(tk )− Lk

τ (U0).

Here, U(tk ) = [u(xi , yj , tk )]1≤i ,j≤N−1.

2) The difference between the full-rank initial value U0 and its
rank-r approximation X 0, both propagated by the full-rank Lie-
Trotter splitting, i.e.

E k
fl = Lk

τ (U0)− Lk
τ (X 0).

3) The difference between the full-rank Lie-Trotter splitting and
the low-rank splitting applied to X 0

E k
lr = Lk

τ (X 0)− Lk
τ,r (X 0).
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Error estimate

Convergence analysis

Theorem 1

Under Assumption 1, for 1 ≤ k ≤ M, the error bound

‖E k
fs‖F ≤ C2[τ(1 + |log τ |) + h2

x + h2
y ]

holds. Here, the constant C2 depends on C1, L and H.

Hints: ‖E k
fs‖F = ‖U(tk )− U(tk ) + U(tk )− Lk

τ (U0)‖F and Property 1 is used.
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Error estimate

Convergence analysis

Theorem 2

Under Assumption 1, E k
lr is bounded on t0 ≤ t0 + kτ ≤ T as

‖E k
lr ‖F ≤ C3ε+ C4τ,

where the constants C3 and C4 depend on H, L and T .

Hints: A. Ostermann, C. Piazzola, H. Walach, Convergence of a low-rank Lie-

Trotter splitting for stiff matrix differential equations, SIAM J. Numer. Anal.,

57 (2019) 1947-1966.
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Error estimate

Convergence analysis

Theorem 3

Under Assumption 1, there exists τ̃ such that for all 0 < τ ≤ τ̃ , the
error of Lτ,r is bounded on t0 ≤ t0 + kτ ≤ T by∥∥∥U(tk )− Lk

τ,r (X 0)
∥∥∥

F
≤ C3ε+ C5[τ(1 + |log τ |) + h2

x + h2
y ] + eLTσ.

(6)
Here C3 and C5 (containing C2 and C4) are independent of τ and
k.

Hints:
∥∥U(tk )− Lk

τ,r (X 0)
∥∥

F
=

∥∥E k
fs + E k

fl + E k
lr

∥∥
F

, ‖E k
fl ‖F ≤ eLTσ.

The spatial error does not depend on r , but when r is small, the error is

dominated by the term C3ε.
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Numerical results

Example X Considering the equation (1) with Ω = [−10, 10] ×
[−10, 10] with u0(x , y) = 2 sech(x) sech(y)e3i(x+y), ν = η = κ =
ξ = γ = 1 and T = 1.

We fix Nx = Ny = N and hx = hy = h. The reference solution
((N,M) = (512, 10000)) is computed by the LBDF2 schemeh. Let

relerr(τ, h) =

∥∥XM − U(T )
∥∥

F

‖U(T )‖F

.

hQ. Zhang et al. “Linearized ADI schemes for two-dimensional space-fractional non-
linear Ginzburg–Landau equation”. In: Comput. Math. Appl. 80 (2020), pp. 1201–
1220.
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Numerical results

Table: Errors and observed temporal convergence orders for N = 512 for
Example X.

r = 1 r = 2 r = 3
(α, β) M relerr(τ, h) rateτ relerr(τ, h) rateτ relerr(τ, h) rateτ

(1.2, 1.9) 16 4.8609E-01 – 8.2522E-01 – 7.9346E-01 –
64 5.3468E-01 -0.0687 2.0577E-01 1.0019 2.0557E-01 0.9743

256 5.7709E-01 -0.0551 5.2778E-02 0.9815 5.1313E-02 1.0011
1024 5.8871E-01 -0.0144 2.4422E-02 0.5559 1.3848E-02 0.9448

(1.5, 1.5) 16 5.5049E-01 – 7.9464E-01 – 7.6149E-01 –
64 6.4759E-01 -0.1172 1.9941E-01 0.9973 1.9988E-01 0.9648

256 6.9229E-01 -0.0481 5.4117E-02 0.9408 5.0664E-02 0.9901
1024 7.0413E-01 -0.0122 3.0728E-02 0.4083 1.4516E-02 0.9017

(1.7, 1.3) 16 5.2921E-01 – 7.8605E-01 – 7.5265E-01 –
64 6.0475E-01 -0.0962 1.9632E-01 1.0007 1.9643E-01 0.9690

256 6.4751E-01 -0.0493 5.2519E-02 0.9511 4.9500E-02 0.9943
1024 6.5899E-01 -0.0127 2.8515E-02 0.4406 1.3823E-02 0.9202

(1.9, 1.2) 16 4.9746E-01 – 8.3250E-01 – 7.9540E-01 –
64 5.3481E-01 -0.0522 2.0620E-01 1.0067 2.0586E-01 0.9750

256 5.7706E-01 -0.0548 5.2760E-02 0.9833 5.1371E-02 1.0013
1024 5.8870E-01 -0.0144 2.4418E-02 0.5557 1.3867E-02 0.9446
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Numerical results

Table: Errors and observed temporal convergence orders for N = 512 for
Example X.

r = 4 r = 5
(α, β) M relerr(τ, h) rateτ relerr(τ, h) rateτ

(1.2, 1.9) 16 7.9240E-01 – 7.9253E-01 –
64 2.0455E-01 0.9769 2.0499E-01 0.9755

256 5.0386E-02 1.0107 5.0491E-02 1.0107
1024 1.2499E-02 1.0056 1.2581E-02 1.0024

(1.5, 1.5) 16 7.5911E-01 – 7.5953E-01 –
64 1.9839E-01 0.9680 1.9883E-01 0.9668

256 4.9256E-02 1.0050 4.9399E-02 1.0045
1024 1.2248E-02 1.0039 1.2361E-02 0.9993

(1.7, 1.3) 16 7.5042E-01 – 7.5024E-01 –
64 1.9513E-01 0.9716 1.9547E-01 0.9702

256 4.8334E-02 1.0067 4.8461E-02 1.0060
1024 1.2008E-02 1.0045 1.2113E-02 1.0001

(1.9, 1.2) 16 7.9353E-01 – 7.9298E-01 –
64 2.0476E-01 0.9772 2.0499E-01 0.9759

256 5.0393E-02 1.0113 5.0492E-02 1.0107
1024 1.2499E-02 1.0057 1.2581E-02 1.0024
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Numerical results

Table: Errors and observed spatial convergence orders for M = 10000 for
Example X.

r = 1 r = 2 r = 3
(α, β) N relerr(τ, h) rateh relerr(τ, h) rateh relerr(τ, h) rateh

(1.2, 1.9) 32 7.1496E-01 – 6.0075E-01 – 6.0033E-01 –
64 5.8194E-01 0.2970 1.2508E-01 2.2639 1.2512E-01 2.2624

128 5.8821E-01 -0.0155 3.5052E-02 1.8353 2.9685E-02 2.0755
256 5.9137E-01 -0.0077 2.2788E-02 0.6212 7.9685E-03 1.8974

(1.5, 1.5) 32 8.2826E-01 – 6.2358E-01 – 6.2338E-01 –
64 6.9735E-01 0.2482 1.2391E-01 2.3313 1.2393E-01 2.3306

128 7.0396E-01 -0.0136 3.8797E-02 1.6753 2.9802E-02 2.0560
256 7.0691E-01 -0.0060 2.9772E-02 0.3820 9.2925E-03 1.6813

(1.7, 1.3) 32 7.9484E-01 – 6.2588E-01 – 6.2572E-01 –
64 6.5274E-01 0.2842 1.2632E-01 2.3088 1.2627E-01 2.3090

128 6.5868E-01 -0.0131 3.7824E-02 1.7397 3.0045E-02 2.0713
256 6.6165E-01 -0.0065 2.7462E-02 0.4619 8.6706E-03 1.7929

(1.9, 1.2) 32 7.1495E-01 – 6.0075E-01 – 6.0033E-01 –
64 5.8194E-01 0.2970 1.2507E-01 2.2640 1.2512E-01 2.2624

128 5.8821E-01 -0.0155 3.5052E-02 1.8352 2.9686E-02 2.0755
256 5.9137E-01 -0.0077 2.2788E-02 0.6212 7.9705E-03 1.8970
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Numerical results

Table: Errors and observed spatial convergence orders for M = 10000 for
Example X.

r = 4 r = 5
(α, β) N relerr(τ, h) rateh relerr(τ, h) rateh

(1.2, 1.9) 32 6.0079E-01 – 6.0069E-01 –
64 1.2478E-01 2.2675 1.2482E-01 2.2668

128 2.8836E-02 2.1134 2.8893E-02 2.1111
256 6.1959E-03 2.2185 6.2558E-03 2.2075

(1.5, 1.5) 32 6.2391E-01 – 6.2380E-01 –
64 1.2330E-01 2.3392 1.2337E-01 2.3381

128 2.8319E-02 2.1223 2.8406E-02 2.1187
256 6.1664E-03 2.1993 6.2448E-03 2.1855

(1.7, 1.3) 32 6.2618E-01 – 6.2608E-01 –
64 1.2579E-01 2.3156 1.2585E-01 2.3146

128 2.8901E-02 2.1218 2.8976E-02 2.1188
256 6.2136E-03 2.2176 6.2862E-03 2.2046

(1.9, 1.2) 32 6.0079E-01 – 6.0069E-01 –
64 1.2478E-01 2.2675 1.2482E-01 2.2668

128 2.8836E-02 2.1134 2.8893E-02 2.1111
256 6.1959E-03 2.2185 6.2558E-03 2.2075
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Numerical results
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Figure: Results for Example X for (α, β) = (1.5, 1.5) and N = M = 200. Left:

Numerical rank of the LBDF2 solution as a function of t. Right: First 60 singular

values of the LBDF2 solution at t = T .
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Numerical results

Figure: Comparison of the absolute values of the LBDF2 solution and our low-rank

solution at t = T for (N,M) = (512, 200) and (α, β) = (1.2, 1.9) for Example X. Left:

The LBDF2 solution. Right: The low-rank solution (rank r = 5).
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Numerical results

Figure: Comparison of the absolute values of the LBDF2 solution and our low-rank

solution at t = T for (N,M) = (512, 200) and (α, β) = (1.5, 1.5) for Example X. Left:

The LBDF2 solution. Right: The low-rank solution (rank r = 5).
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Numerical results

Figure: Comparison of the absolute values of the LBDF2 solution and our low-rank

solution at t = T for (N,M) = (512, 200) and (α, β) = (1.9, 1.2) for Example X. Left:

The LBDF2 solution. Right: The low-rank solution (rank r = 5).
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Summary

Conclusions

I A numerical integration method based on a dynamical low-rank
approximation is proposed to solve 2D FGLEs.

I We conduct an error analysis of the proposed procedure, which
is independent of the stiffness and robust with respect to pos-
sibly small singular values in the approximation matrix.

I Numerical results show that our method is robust and accurate.
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Work(s) in progress

Work(s) in progress/ideas:

I Extension of our method to other problems such as space frac-
tional Schrödinger equations.

I For solving higher-dimensional version of (1), we suggest con-
sidering the dynamical tensor approximationi.

I Design some fast implementations (e.g., a parallel version) of
our method.

iOt. Koch and C. Lubich. “Dynamical tensor approximation”. In:
SIAM J. Matrix Anal. Appl. 31 (2010), pp. 2360–2375.
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Our recent work

1) Y.-L. Zhao, A. Ostermann, X.-M. Gu, A low-rank Lie-Trotter splitting
approach for nonlinear fractional complex Ginzburg-Landau equa-
tions, J. Comput. Phys., 2020, 17 pages. (under review)

2) Y.-L. Zhao, M. Li, A. Ostermann, X.-M. Gu, An efficient second-
order energy stable BDF scheme for the space fractional Cahn-Hilliard
equation, BIT, 2019, 26 pages. (under revise)

3) Y.-L. Zhao, X.-M. Gu, A. Ostermann, A parallel preconditioning tech-
nique for an all-at-once system from subdiffusion equations with vari-
able time steps, J. Comput. Sci., 2019, 22 pages. (under revise)
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Questions or comments?

Many thanks for the kind invitation and your
attention!
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