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Background

Fractional Ginzburg-Landau equations (FGLEs) have been used to
describe various physical phenomena such as neural networks mod-
eling and fractal media?.

2V.E. Tarasov and G.M. Zaslavsky. “Fractional Ginzburg-Landau equation for fractal
media”. In: Physica A 354 (2005), pp. 249-261.

bO. Koch and C. Lubich. “Dynamical low-rank approximation”. In:
SIAM J. Matrix Anal. Appl. 29 (2007), pp. 434-454.
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Background

Fractional Ginzburg-Landau equations (FGLEs) have been used to
describe various physical phenomena such as neural networks mod-
eling and fractal media?.

Dynamical low-rank approximations of matrices are widely used for
reducing models of large size. Such an approach has a broad va-
riety of application areas, such as image compression, information

retrieval and a blow-up problem of a reaction-diffusion equation®.

2V.E. Tarasov and G.M. Zaslavsky. “Fractional Ginzburg-Landau equation for fractal
media”. In: Physica A 354 (2005), pp. 249-261.

bO. Koch and C. Lubich. “Dynamical low-rank approximation”. In:
SIAM J. Matrix Anal. Appl. 29 (2007), pp. 434-454.
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Motivation

In this work, we mainly study a dynamical low-rank approximation
for solving the following 2D complex FGLE:

Oeu — (v +in) (05 +0y)u + (k +1€)|ulPu — yu =0,

(x,y,t) € Q2 x (0, T],
u(x,y,0) = up(x,y), (x,y)€Q=QuUoQ,
u(x,y,t) =0, (x,y) € 09,

ei=+/-1,v>0, k>0, n, & 7 are real numbers;

o Q = (x;,xr) x (yi,¥r) C R? wup(x,y) is a given complex
function.
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where both 0% (1 < a < 2) and 85 (1 < B < 2) are the Riesz
fractional derivatives®:

o _ 1 82 > l-a
8X U(X,y, t) - _2cos(om/2)r(2 _ Oé) Ox2 /oo |X - C’ U(C,y, t)dC7
1 5 oo 3
35u(x,y, t) = _2COS(57T/2)F(2 _ 6)87)/2 /_Oo |y - <|1 7 U(X7<a t)dC

°R. Gorenflo and F. Mainardi. “Random walk models for space-fractional diffusion
processes”’. In: Fract. Calc. Appl. Anal. 1 (1998), pp. 167—191.
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The matrix differential equation

The semi-discrete scheme

The second-order fractional centered difference method? is used for
space discretization, i.e,

Ou(xi,yj t) = —h* D gluiiy(t) + O(h?)
k=—Ny—+i

= 63 uy(t) + O(h3)

J
Oulyst) = 7 Y g il(6)+ O(R)
k=—Ny+j

= 6D u;(t) + O(h2)

dC. Celik and M. Duman. “Crank—Nicolson method for the fractional diffusion
equation with the Riesz fractional derivative”. In: J. Comput. Phys. 231 (2012),
pp. 1743-1750.
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The semi-discrete scheme

" (=D T(1+p)

& =T a—k+ D2+ k1) W= 0 kel)

XR — XL h _YR—YL
y =

h, =
X Ny ' N,
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The semi-discrete scheme

k
’ (DT +p) L
= — 5 B EZ
& = Tkt iksD H=*F )
XR — XL YR — YL
hy = , h, =
N Y N,

The semi-discrete scheme is given as

duy(t)
dt

= (v-tin) (09 -+ 87) wy(e) = (i) g ()7 wy(£) + (1),

where ujj(t) = u(x;, yj, t).
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The matrix differential equation

The matrix differential equation corresponding to the above spatial
semi-discretized form is give by

U(t) = AU(t) + U(t)A,—(r +i€) |U()]? U(t)+
YU(t), (2)
U(0) = U°,
where

U(t) = lug(th<icn—1, U° = [wo(xi, y)li<icn, -1,

1<j<N, -1 1<j<N,—1
duj;(t

TOR S

dt 1<i<Ny—1

1<j<Ny—1
Ax and A, are two symmetric Toeplitz matrices with first columns:

v +in T v+in T

~ e l&5El e ] and g 858l e,

y
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The full-rank Lie-Trotter splitting method

Eq. (2) is split into the following two subproblems:

Stiff linear part

Ul(t) = AXUl(t) + Ul(t)Ay, Ul(to) = U:(l), (3)
and
Us(t) = G(Ua(t)) £ —(r +i€) |Ua(2)? Ua(t) + 7 Ua(1),
onl (4)

Nonstiff (nonlinear) part

Ua(tp) = Ug.
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The full-rank Lie-Trotter splitting method

The full-rank Lie-Trotter splitting scheme with time step size 7 =
is given by

<~

L, =oLodl.

Here, ®L and ®¢ denote the solutions of Egs. (3) and (4), respec-
tively.
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The full-rank Lie-Trotter splitting method

The full-rank Lie-Trotter splitting scheme with time step size 7 =
is given by

<~

L, =oLodl.

Here, ®L and ®¢ denote the solutions of Egs. (3) and (4), respec-
tively.

Starting with UY = U°, the numerical solution U of Eq. (1) at
t = ty is thus given by

U = £.(U°%) = oL o S (1),
Subsequently, the numerical solution of Eq. (1) at tx is

Uk = ck).
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The low-rank approximation

We seek after low-rank approximations
X(t), Xo(t) € M, = {X(t) e CMN=DxN=1) | rank (X(t)) = r}

to Ui(t) and Ux(t), respectively.
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The low-rank approximation

The low-rank solution of Eq. (3)

It can be observed that (3) is rank preserving®. That is, for any
X e M, AX+ XA, € TxM,, where Tx M, is the tangent space
of M, at a rank-r matrix X.

€U. Helmke and J. B. Moore. Optimization and Dynamical Systems. London:
Springer-Verlag, 1994, Lemma 1.22.
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The low-rank approximation

The low-rank solution of Eq. (3)

It can be observed that (3) is rank preserving®. That is, for any
X e M, AX+ XA, € TxM,, where Tx M, is the tangent space
of M, at a rank-r matrix X. Thus, for a given rank-r initial value
X9, the solution of

X1(t) = AXi(t) + X1 (DA,  Xi(to) = XD

remains rank-r for all t.

How to solve this at t = t;7

€U. Helmke and J. B. Moore. Optimization and Dynamical Systems. London:
Springer-Verlag, 1994, Lemma 1.22.
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The low-rank approximation

The low-rank solution of Eq. (3)

It can be observed that (3) is rank preserving®. That is, for any
X e M, AX+ XA, € TxM,, where Tx M, is the tangent space
of M, at a rank-r matrix X. Thus, for a given rank-r initial value
X?, the solution of

X1(t) = AXi(t) + X1 (DA,  Xi(to) = XD
remains rank-r for all t.
How to solve this at t = t;7

Xl(tl) = eTAXXloeTAV.

€U. Helmke and J. B. Moore. Optimization and Dynamical Systems. London:
Springer-Verlag, 1994, Lemma 1.22.
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The low-rank approximation

Thinking in terms of the low-rank manifold M and the orthogenal projection onto the
tangent space Ty (M, we imagine condition (1.6) as

Figure 1.1: Orthogonal projection onto the tangent space of the low-rank manifold. The
red dashed line represents the orthogonal projection, which results in Y. Out of all § Y €
Ty M, Y is the tangent element that minimizes the distance between F(t,Y) and the
tangent space of M at the approximation matrix Y’

H. M. Walach, Time integration for the dynamical low-rank approximation of matrices
and tensors (Doctoral dissertation), Eberhard Karls Universitat Tiibingen (2019), Page
17.



A low-rank approximation of the FGLE
0000®00000

The low-rank approximation

The low-rank solution of Eq. (4)

The low-rank solution of subproblem (4) is obtained by solving the
following optimization problemf

min
Xa(t)eM,

Xo(t) = Ua()|, st Xelt) € T M,

where Tx, ()M, is the tangent space of M, at the current approx-
imation Xo(t).

How to solve this optimization problem?

fO. Koch and C. Lubich. “Dynamical low-rank approximation”. In:
SIAM J. Matrix Anal. Appl. 29 (2007), pp. 434—454.
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The low-rank approximation

The low-rank solution of Eq. (4)

The low-rank solution of subproblem (4) is obtained by solving the
following optimization problemf

min
Xa(t)eM,

Xo(t) = Ua()|, st Xelt) € T M,

where Tx, ()M, is the tangent space of M, at the current approx-
imation Xo(t).

How to solve this optimization problem?
C. Lubich, I. V. Oseledets, A projector-splitting integrator for dynamical low-rank
approximation, BIT 54 (2014) 171-188.

fO. Koch and C. Lubich. “Dynamical low-rank approximation”. In:
SIAM J. Matrix Anal. Appl. 29 (2007), pp. 434—454.
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Solve the optimization problem

min

Xo(t) — Us(t
Xo(t)EM, 2(t) = Ua(t)

, s.t. Xg(t) € 73(2(t)/\/lr
equivalent to
Xo(t) = P(Xa(1))G(Xa(1)),  Xa(to) = X3 € M.,

where P(Xx(t)) is the orthogonal projection onto Tx, ()M,
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Solve the optimization problem

A rank-r matrix Xo(t) € CINx—1*(NVy=1) can be expressed as Xo(t) =
S(t)X(t)V(t)*, where S(t) € CM—1xr and V(t) € CM—1)xr
have orthonormal columns, X(t) € C"*" is nonsingular and has the
same singular values as X3(t), and * means conjugate transposes.

This expression is similar to SVD, but X(t) is not necessarily a
diagonal matrix.

€C. Lubich and I. V. Oseledets. “A projector-splitting integrator for dynamical
low-rank approximation”. In: BIT 54 (2014), pp. 171-188.
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The projector-splitting integrator

P(X2(t))G(Xa(t)) = S(£)S(t)" G(Xa(t))—
S()S(t) G(Xa(t))V(E) V() +
G(X(t))V(t)V(t
2 P1(X(t))G
P1(Xa(t))G
G(X2(t))P2

P1(X>2(t)) and Py(X2(t)) are the orthogonal projections onto the
spaces spanned by the range and the corange of X5(t), respectively.
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The projector-splitting integrator

The low-rank solution of Eq. (4) at t; can be obtained by solving
the evolution equations:

X3(t) = PL(X2(1))G(Xa(t)),  X3(t0) = X3,
X3 (t) = —PL(Xa(1)) G (Xa (1)) P2(Xa(1)), X3 (t0) = X3(t1),
X' (1) = G(Xa(1)P2(Xa(1), X3 (t0) = X' (1)

Then, XJ/!(t1) is the approximate solution of Xp(t1).
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The low-rank approximation

The low-rank approximation of Eq. (1)

Let X° be a rank-r approximation of the initial value U°. We start
with X9 = X and obtain the rank-r approximation X! of the solu-
tion of (1) at t; as

XY= £, (X% = oL o dE(X9). (5)

Here, ¢ denotes the low-rank solution of (4). Consequently, the
low-rank solution of (1) at t, is X* = L% (XO).
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Preliminaries

We assume that

(a) G is continuously differentiable in a neighborhood of the ex-
act solution, and the solution of Eq. (1) is bounded, i.e.
lu(x,y,t)] <6, (x,y,t) € Qx (0, T], for some & > 0;

(b) there exists € > 0 such that

G(X(t)) = B(X(t)) + R(X(t)) for o <t<T,

where B(X(t)) € TxyM; and |[R(X(t))| ¢ < e.

(c) The exact solution of (1) is sufficiently smooth such that the
fractional central difference method is second-order accurate.

V.
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Property 1

(a) There exists C; > 0 such that Ax and A, satisfy

C
|4 2e <= l2llF
F t

<121,

e (AZ + ZAy)e™

for all t > 0 and Z € C(Nx=1)x(Ny—1)

(b) Under Assumption 1(a), the function G is locally Lipschitz con-
tinuous and bounded in a neighborhood of the solution U(t).

That is to say, forHU—U H <E HLNJ—U H < £ and
HU U(t HF<§(§>O to < t < T), one obtains

|6(0) - 6(0)

<to-0,. 16@, <

where the constants L and H depend on § and €.
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Convergence analysis

Let X° be a given rank-r approximation of the initial value U° sat-
isfying HXO — UOHF < o, for some o > 0.
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Error estimate

Convergence analysis

The global error can be split in three terms:
1) The global error of the full-rank Lie-Trotter splitting, i.e.

Ef = U(ti) — LE(U°).

Here, U(tx) = [u(xi, yj, tk)]lgi,jngl'
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Convergence analysis

The global error can be split in three terms:
1) The global error of the full-rank Lie-Trotter splitting, i.e.

Ef = U(ti) — LE(U°).

Here, U(tx) = [u(xi, yj, t)l 1< jen—1-

2) The difference between the full-rank initial value U° and its
rank-r approximation X°, both propagated by the full-rank Lie-
Trotter splitting, i.e.

Ef = L5(U°) — £A(X°).
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Error estimate

Convergence analysis

The global error can be split in three terms:
1) The global error of the full-rank Lie-Trotter splitting, i.e.

Ef = U(ti) — LE(U°).

Here, U(tx) = [u(xi, yj, t)l 1< jen—1-

2) The difference between the full-rank initial value U° and its
rank-r approximation X°, both propagated by the full-rank Lie-
Trotter splitting, i.e.

Ef = L5(U°) — £A(X°).

3) The difference between the full-rank Lie-Trotter splitting and
the low-rank splitting applied to X°

Ef = £5(X°) — £, (X°).
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Convergence analysis

Under Assumption 1, for 1 < k < M, the error bound
IEEIF < Golr(L + llog 7]) + h2 + h2]

holds. Here, the constant C, depends on Cy, L and H.
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Error estimate

Convergence analysis

Under Assumption 1, for 1 < k < M, the error bound

IEK]|F < Colr(1 + llog 7]) + A2 + h2]

holds. Here, the constant C, depends on Cy, L and H.

Hints: ||EL|lF = ||U(t) — U(te) + U(tx) — £5(U°)||F and Property 1 is used.
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Convergence analysis

Under Assumption 1, E/; is bounded on to < tg + k7 < T as
|EX|IF < Gse + Car,

where the constants C3 and C, depend on H, L and T.
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Error estimate

Convergence analysis

Under Assumption 1, E/; is bounded on to < tg + k7 < T as
|EX|IF < Gse + Car,

where the constants C3 and C, depend on H, L and T.

Hints: A. Ostermann, C. Piazzola, H. Walach, Convergence of a low-rank Lie-
Trotter splitting for stiff matrix differential equations, SIAM J. Numer. Anal.,
57 (2019) 1947-1966.
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Convergence analysis

Theorem 3

Under Assumption 1, there exists T such that for all 0 < 7 < 7, the
error of L . is bounded on ty < to + k7 < T by

Huuk) - ﬁiw(XO)HF < Goe + Gs[r(1+ [log 7l) + W2 + h2] + €' To.
(6)

Here C3 and Cs (containing Cy and Cy) are independent of T and
k.

<
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Convergence analysis

Theorem 3

Under Assumption 1, there exists T such that for all 0 < 7 < 7, the
error of L . is bounded on ty < to + k7 < T by

Huuk) - ﬁiw(XO)HF < Goe + Gs[r(1+ [log 7l) + W2 + h2] + €' To.
(6)

Here C3 and Cs (containing Cy and Cy) are independent of T and
k.

<

Hints: |u(t) — £5 (X0)|| = ||EK + Ef + Ef|| . |EKIIF < etTo.
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Convergence analysis

Theorem 3
Under Assumption 1, there exists T such that for all 0 < 7 < 7, the
error of L . is bounded on ty < to + k7 < T by

Huuk) - ﬁiw(XO)HF < Goe + Gs[r(1+ [log 7l) + W2 + h2] + €' To.
(6)

Here C3 and Cs (containing Cy and Cy) are independent of T and
k.

<

Hints: |u(t) — £5 (X0)|| = ||EK + Ef + Ef|| . |EKIIF < etTo.

The spatial error does not depend on r, but when r is small, the error is
dominated by the term Gse.
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Numerical results

Example X Considering the equation (1) with Q = [-10,10] x
[—10, 10] with ug(x, y) = 2 sech(x) sech(y)edtY) v =pn =k =
E=~v=1land T =1.

We fix Ny = N, = N and hy = h, = h. The reference solution
(N, M) = (512,10000)) is computed by the LBDF2 scheme". Let

| XM —u(T
(Tl

)l

relerr(7, h) =

hQ. Zhang et al. “Linearized ADI schemes for two-dimensional space-fractional non-
linear Ginzburg—Landau equation”. In: Comput. Math. Appl. 80 (2020), pp. 1201-
1220.
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Numerical results

Table: Errors and observed temporal convergence orders for N = 512 for

Example X.
r=1 r=2 r=3

(a, B) M relerr(7, h) rate, relerr(7, h) rate, relerr(7, h) rate,

(1.2, 1.9) 16 4.8609E-01 - 8.2522E-01 - 7.9346E-01 -
64 5.3468E-01 -0.0687 2.0577E-01 1.0019 2.0557E-01 0.9743
256 5.7709E-01 -0.0551 5.2778E-02 0.9815 5.1313E-02 1.0011
1024 5.8871E-01 -0.0144 2.4422E-02 0.5559 1.3848E-02 0.9448

(1.5, 1.5) 16 5.5049E-01 - 7.9464E-01 - 7.6149E-01 -
64 6.4759E-01 -0.1172 1.9941E-01 0.9973 1.9988E-01 0.9648
256 6.9229E-01 -0.0481 5.4117E-02 0.9408 5.0664E-02 0.9901
1024 7.0413E-01 -0.0122 3.0728E-02 0.4083 1.4516E-02 0.9017

(1.7, 1.3) 16 5.2921E-01 - 7.8605E-01 - 7.5265E-01 -
64 6.0475E-01 -0.0962 1.9632E-01 1.0007 1.9643E-01 0.9690
256 6.4751E-01 -0.0493 5.2519E-02 0.9511 4.9500E-02 0.9943
1024 6.5899E-01 -0.0127 2.8515E-02 0.4406 1.3823E-02 0.9202

(1.9, 1.2) 16 4.9746E-01 - 8.3250E-01 - 7.9540E-01 -
64 5.3481E-01 -0.0522 2.0620E-01 1.0067 2.0586E-01 0.9750
256 5.7706E-01 -0.0548 5.2760E-02 0.9833 5.1371E-02 1.0013

1024 5.8870E-01 -0.0144 2.4418E-02 0.5557 1.3867E-02 0.9446
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Numerical results

Table: Errors and observed temporal convergence orders for N = 512 for

Example X.
r=4 r=>5

(e, B) M relerr(7, h) rate, relerr(7, h) Tate,

(1.2, 1.9) 16 7.9240E-01 - 7.9253E-01 -
64 2.0455E-01 0.9769 2.0499E-01 0.9755
256 5.0386E-02 1.0107 5.0491E-02 1.0107
1024 1.2499E-02 1.0056 1.2581E-02 1.0024

(1.5, 1.5) 16 7.5911E-01 - 7.5953E-01 -
64 1.9839E-01 0.9680 1.9883E-01 0.9668
256 4.9256E-02 1.0050 4.9399E-02 1.0045
1024 1.2248E-02 1.0039 1.2361E-02 0.9993

(1.7, 1.3) 16 7.5042E-01 - 7.5024E-01 -
64 1.9513E-01 0.9716 1.9547E-01 0.9702
256 4.8334E-02 1.0067 4.8461E-02 1.0060
1024 1.2008E-02 1.0045 1.2113E-02 1.0001

(1.9, 1.2) 16 7.9353E-01 - 7.9298E-01 -
64 2.0476E-01 0.9772 2.0499E-01 0.9759
256 5.0393E-02 1.0113 5.0492E-02 1.0107

1024 1.2499E-02 1.0057 1.2581E-02 1.0024
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Numerical results

Table: Errors and observed spatial convergence orders for M = 10000 for

Example X.
r=1 r=2 r=3

(e, B) N relerr(7, h) rate, relerr(7, h) ratey, relerr(7, h) ratey,

(1.2, 1.9) 32 7.1496E-01 - 6.0075E-01 - 6.0033E-01 -
64 5.8194E-01 0.2970 1.2508E-01 2.2639 1.2512E-01 2.2624
128 5.8821E-01 -0.0155 3.5052E-02 1.8353 2.9685E-02 2.0755
256 5.9137E-01 -0.0077 2.2788E-02 0.6212 7.9685E-03 1.8974

(1.5, 1.5) 32 8.2826E-01 - 6.2358E-01 - 6.2338E-01 -
64 6.9735E-01 0.2482 1.2391E-01 2.3313 1.2393E-01 2.3306
128 7.0396E-01 -0.0136 3.8797E-02 1.6753 2.9802E-02 2.0560
256 7.0691E-01 -0.0060 2.9772E-02 0.3820 9.2925E-03 1.6813

(1.7, 1.3) 32 7.9484E-01 - 6.2588E-01 - 6.2572E-01 -
64 6.5274E-01 0.2842 1.2632E-01 2.3088 1.2627E-01 2.3090
128 6.5868E-01 -0.0131 3.7824E-02 1.7397 3.0045E-02 2.0713
256 6.6165E-01 -0.0065 2.7462E-02 0.4619 8.6706E-03 1.7929

(1.9,1.2) 32 7.1495E-01 - 6.0075E-01 - 6.0033E-01 -
64 5.8194E-01 0.2970 1.2507E-01 2.2640 1.2512E-01 2.2624
128 5.8821E-01 -0.0155 3.5052E-02 1.8352 2.9686E-02 2.0755

256 5.9137E-01 -0.0077 2.2788E-02 0.6212 7.9705E-03 1.8970
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Table: Errors and observed spatial convergence orders for M = 10000 for

Example X.
r==4 r=5
(a, B) N relerr(T, h) ratey relerr(T, h) ratey,
(1.2,1.9) 32 6.0079E-01 - 6.0069E-01 -
64 1.2478E-01 2.2675 1.2482E-01 2.2668

128 2.8836E-02 2.1134 2.8893E-02 21111
256 6.1959E-03 2.2185 6.2558E-03 2.2075

(1.5, 1.5) 32 6.2391E-01 - 6.2380E-01 -
64 1.2330E-01 2.3392 1.2337E-01 2.3381
128 2.8319E-02 2.1223 2.8406E-02 2.1187
256 6.1664E-03 2.1993 6.2448E-03 2.1855

(1.7, 1.3) 32 6.2618E-01 - 6.2608E-01 -
64 1.2579E-01 2.3156 1.2585E-01 2.3146
128 2.8901E-02 2.1218 2.8976E-02 2.1188
256 6.2136E-03 2.2176 6.2862E-03 2.2046

(1.9, 1.2) 32 6.0079E-01 - 6.0069E-01 -
64 1.2478E-01 2.2675 1.2482E-01 2.2668
128 2.8836E-02 2.1134 2.8893E-02 21111
256 6.1959E-03 2.2185 6.2558E-03 2.2075
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Figure: Results for Example X for (o, 3) = (1.5,1.5) and N = M = 200. Left:
Numerical rank of the LBDF2 solution as a function of t. Right: First 60 singular

values of the LBDF2 solution at t = T.
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Figure: Comparison of the absolute values of the LBDF2 solution and our low-rank
solution at t = T for (N, M) = (512,200) and (c, 8) = (1.2,1.9) for Example X. Left:
The LBDF2 solution. Right: The low-rank solution (rank r = 5).
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Figure: Comparison of the absolute values of the LBDF2 solution and our low-rank
solution at t = T for (N, M) = (512,200) and («, 8) = (1.5, 1.5) for Example X. Left:
The LBDF2 solution. Right: The low-rank solution (rank r = 5).
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Figure: Comparison of the absolute values of the LBDF2 solution and our low-rank
solution at t = T for (N, M) = (512,200) and (c, 8) = (1.9, 1.2) for Example X. Left:
The LBDF2 solution. Right: The low-rank solution (rank r = 5).
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Conclusions

» A numerical integration method based on a dynamical low-rank
approximation is proposed to solve 2D FGLEs.

» We conduct an error analysis of the proposed procedure, which
is independent of the stiffness and robust with respect to pos-

sibly small singular values in the approximation matrix.

» Numerical results show that our method is robust and accurate.
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Work(s) in progress

Work(s) in progress/ideas:

» Extension of our method to other problems such as space frac-
tional Schrédinger equations.

» For solving higher-dimensional version of (1), we suggest con-
sidering the dynamical tensor approximation'.

» Design some fast implementations (e.g., a parallel version) of
our method.

iOt. Koch and C. Lubich. “Dynamical tensor approximation”. In:
SIAM J. Matrix Anal. Appl. 31 (2010), pp. 2360-2375.
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Our recent work

1) Y.-L. Zhao, A. Ostermann, X.-M. Gu, A low-rank Lie-Trotter splitting
approach for nonlinear fractional complex Ginzburg-Landau equa-
tions, J. Comput. Phys., 2020, 17 pages. (under review)

2) Y.-L. Zhao, M. Li, A. Ostermann, X.-M. Gu, An efficient second-
order energy stable BDF scheme for the space fractional Cahn-Hilliard
equation, BIT, 2019, 26 pages. (under revise)

3) Y.-L. Zhao, X.-M. Gu, A. Ostermann, A parallel preconditioning tech-
nique for an all-at-once system from subdiffusion equations with vari-
able time steps, J. Comput. Sci., 2019, 22 pages. (under revise)



Questions or comments?

Many thanks for the kind invitation and your
attention!
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